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1 Introduction

This is the final report for this body of research.
Screen-film mammography and digital mammography have been used for over 30 years in the early

detection of cancer. The combination of screening and adjuvant therapies have led to a decrease in
the mortality rate from breast cancer [1]. Because mammography projects a three-dimensional object
onto a two-dimensional surface, structures may be obscured by overlapping tissue, while simultaneously
allowing overlapping normal tissue to appear tumor-like. A solution to this problem is digital breast
tomosynthesis (DBT), which produces images of slices through the breast using multiple projection
view images from a limited angular range [2, 3].

The goal of this research was to develop methodology for optimizing the acquisition parameters for
tomosynthesis. This requires an understanding of the effect of individual acquisition parameters on im-
age quality and on performance for search tasks in digital breast tomosynthesis. To accomplish this, we
have developed a simulation for x-ray projection imaging, including ray tracing, focal spot blur, poly-
chromaticity, scatter, quantum noise, and detector blur and noise. An existing digital anthropomorphic
breast phantom was improved to include both large-scale and small-scale structures. We investigated
methods for validating this phantom, including both spectral and computer-aided detection methods.
We are currently validating this computer simulation, after which we plan on optimizing the acquisition
parameters by exploring the surface of all possible combinations of acquisition parameters.

Since the start of this project, the Hologic digital breast tomosynthesis device has gained approval
by the FDA, which occurred in February 2011. Other research groups have been working on the topic
of optimization of different portions of the tomosynthesis imaging system [4–11]. Our group has also
published on the effect of acquisition parameters and computer-generated quantum noise [12].

In the course of this research, we found it necessary to explore anthropomorphic software breast
phantoms in greater depth. Anthropomorphic phantoms have become a bigger topic in the past decade.
With the advent of three-dimensional imaging modalities and the decreasing cost of computer memory,
it has become essential and feasible to create these multi-gigabyte arrays for the purpose of mimicking
tissue in simulation studies. Many groups are working on creating breast phantoms, including ones
based on mastectomy specimens [13], breast CT images [14], and entirely computer-generated models
[15–19].

The only anthropomorphic physical breast phantom available for commercial sale is the “Rachel”
breast phantom, developed by Caldwell and Yaffe [20]. Although the 2D projection views from this
phantom are stunningly realistic; the anatomic noise of the phantom is contained in a single plane,
which disallows its use in 3D imaging modalities. Recently, Carton and colleagues have developed a
physical version of their software breast phantom [21]. The methods used to make a single phantom
are time-consuming and costly, but the methods used (namely, rapid prototyping) has potential to be
useful in future studies where a physical phantom is needed to correspond exactly to a software one.

This final report will summarize the research accomplished during the entire period of this award,
including the work done on anthropomorphic phantoms, which has become a big portion of this research.

2 Body

The statement of work associated with this research included three parts:

1. To develop a computer model to simulate a clinical DBT system

2. To develop a theoretical framework to determine optimal acquisition conditions

3. To test the simulated DBT images using CADe packages
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We have completed the assembly of the computer model simulation of the clinical DBT system.
This simulation includes Monte Carlo-derived point response functions for detector simulation as well
as similarly-derived scatter point spread functions for scatter simulation. The model also includes focal
spot blur, inverse-square law, polychromaticity, quantum noise, detector blur, and detector noise.

2.1 To develop a computer model to simulate a clinical DBT system

The computer model was completed in 2010, and subsequent work was done to validate this simulation.
In this section, I will describe the architecture of the code and I will explain the extent of the validation
we have performed so far.

Each physical factor can be independently included or removed from the simulation, so that each
parameter can be tested for its effect on the final image quality. To visualize the architecture of the
program, see Appendix A.

2.1.1 Simulation

A.1. Focal spot blur: The focal spot is simulated as a superposition of multiple images, each made
with an infinitesimal point source distributed over an area equivalent to the size of the focal spot. Since
the x-ray source is identical between the GE Senographe Essential and the GE tomosythesis prototype,
we measured the size of the focal spot of the GE Senographe Essential in order to estimate the actual
size of the tomosynthesis system focal spot. A 30-micron pinhole was used to measure the focal spot
size for two nominal sizes (100 microns and 300 microns) (see Table 1).

Knowing the actual size of the focal spot enables us to choose source points that capture the extent
of the focal spot. The number of focal spot points is defined by four parameters: the length and width
of the spot, as well as the number of grid points in each of two directions. The simulation will then
generate an array of points that span the space, and a projection is calculated for each point, which
are summed together to produce the blurring effect.

Table 1: Measured sizes for two focal spots on the GE Senographe Essential.

Nominal size Actual size (microns)
⊥ to A/C† ‖ to A/C

100 microns 177.75 236.38
300 microns 591.83 497.35

† A/C is the anode-cathode axis.

A.2. Angle-dependent scatter: Scatter was modeled as a change in resolution and magnitude of the
image. Scatter point spread functions (sPSFs) were measured using a Monte Carlo software package
called PENELOPE [22], which simulates gamma and electron/positron interactions to generate particle
track maps as well as dose distributions.

Geometries for these scenarios were defined using quadric surfaces, and sPSFs were generated as-
suming an ideal detector at a distance 1 cm below a 5-cm thick infinitely long volume of 50-50 glandular-
adipose tissue. In the future, new point spread functions should be made for different thicknesses and
different air gaps.

Scatter point spread functions were generated for angles of incidence ranging from 0 degrees to +60
degrees. These sPSFs were reflected in order to obtain sPSFs for -60 degrees to 0 degrees incidence.
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We validated our sPSFs by comparing the data for zero degrees to data from Boone et al. [23]. We also
compared our non-zero degree incidence sPSFs to data from Sechopoulos et al. [24] We found good
agreement in both cases. These methods and results are described in the Annual Grant Update from
2009 [25].
A.3. Angle-dependent detector response: Two different detectors were modeled: gadolinium
oxysulfide (Gd2O2S) and cesium iodide (CsI). The Gd2O2S detector was modeled by summing to-
gether Gaussian point response functions, one for each layer of the detector. The depth-dependent
MTF was determined using an equation from Nishikawa and Yaffe [26]. The CsI detector was modeled
using depth-dependent point response functions (PRFs), which were computed using a Monte Carlo
simulation package called MANTIS. MANTIS works in conjunction with PENELOPE to convert the
absorbed dose into detector output for an indirect detector. MANTIS models optical photon interac-
tions, taking into account the surface reflective properties of the materials in the geometry. To obtain
depth-dependent PRFs, x-ray photons were forced to interact at a certain depth below the top surface
of the detector. This method is described in the Annual Grant Update from 2010 [27].

The detector PRFs were acquired on a 300 micron x 300 micron square detector, with a resolution
of 1 micron. While this produced very nice images of PRFs, convolution at such a high resolution was
too memory intensive to carry out. For this reason, we down-sampled the PRFs to 10-micron pixel
size, which retained good spatial resolution while reducing the amount of memory needed.

In future studies, we found that even the 10-micron pixel size required too much memory to perform
the convolution operation with the projection view image. Since we are modeling a GE-prototype
tomosynthesis system, and the GE detector has a final resolution of 100 microns, the detector-blurred
image would eventually need to be down-sampled to 100 microns. For a one-dimensional pattern, we did
the down-sampling both before and after a 1D convolution (with a low-resolution and a high-resolution
PRF, respectively). We found small differences between the two cases, which led us to conclude that
there would be little difference if we performed the down-sampling before convolution. The 10-micron
PRFs were down-sampled further to 100 microns, which gave very coarse point response functions with
matrix size 3x3.
A.4. Detector types: We modeled two detector types: gadolinium oxysulfide and cesium iodide, as
described in the previous section.

2.1.2 DBT system parameters

B.1. Geometries We have simulated just the partial isocentric geometry so far. The projection code
we have written, however, includes framework for easily switching over to different geometries, such as
circular and linear. This particular experiment was limited to a single geometry because the scatter
point spread functions we generated were strictly for a 1-cm air gap between the scattering material and
the detector surface. For circular geometry, the air gap linearly increases across the detector, leading to
a variable sPSF, which cannot be modeled using linear shift invariant techniques, as we have done here.

B.2. Acquisition parameters
B.2.1. Number of projection views: We have investigated the effect of number of pro-

jection views on detectability of microcalcification-like spheres embedded in 50-50 glandular-adipose
breast tissue. Using a fixed angular range, we varied the number of projection views and calculated
the detectability of microcalcifications in the projection view and reconstructed slices using template
matching in a signal-known exactly task. We concluded that any number of projection views greater
than 11 does not affect the detectability of microcalcifications; however, fewer than 11 projection
views detrimentally affects detectability. This data was presented at the SPIE Medical Image scientific
meeting in 2008, and it is reported in the Annual Grant Update from 2009 [25].
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B.2.2. Angular range: In that same study, we also varied the angular range while keeping the
number of views fixed at 11. We found that an increased angular range actually decreases detectability
of microcalcifications, when the number of views is held constant. Similarly to the number of projection
views study, we only included quantum noise in the projection view images, since the scatter and
detector models had not been completed at the time. Again, this data is contained in the Annual
Grant Update from 2009 [25].

B.2.3. Dose distribution: We have evaluated the effect of a variable exposure method, which
placed half the x-ray photons in the middle projection view, while dividing the other half of the exposure
among the remaining projection views. In this study, we again only included quantum noise. We found
that, although the detectability index is very high in the middle projection, the other projection
views have such a decreased detectability, that it negatively affects the overall detectability once the
projections are reconstructed into slices through the breast. This data was presented at the AAPM
Annual Meeting in 2008, and the data can be found in the Annual Grant Update from 2009 [25].

B.2.4. Total dose: We have not yet evaluated the effect of total dose on the image quality of
tomosynthesis.

B.2.5. Angular distribution of projection views: We have not explicitly studied the effect
of the angular distribution of projection views; however, the simulation has been designed so that
such a study can easily be accommodated. The framework exists for controlling the angular spacing
between projection views. Also, we plan on acquiring data for all views, then manually selecting views
to combine in order to simulate the non-uniform distribution.

B.2.6. Beam quality: We have measured scatter point spread functions for monoenergetic
beams between 12 and 40 keV. Using these monoenergetic sPSFs, we can generate sPSFs for any
spectrum up to 40 kVp, using weights for each sPSF based on the shape of the spectrum. So far, this
has been done for a molybdenum anode and molybdenum filter.

We have collected x-ray spectra for a variety of anodes and filters, using code developed by John
Boone. We have produced x-ray spectra that range from 24 kVp to 40 kVp for anode-filter combinations
including Mo-Mo, Mo-Rh, and Rh-Rh. These combinations were selected because they represent the
possible configurations that the GE Senographe Essential digital mammography unit can achieve.

2.1.3 Validation

Although validation was not included in the original proposal, it became clear that such a step was
necessary. For validation, we imaged a lead edge on the GE Senographe Essential digital mammography
unit. It was difficult to match the simulation to the acquired data because the distances among the
source, the edge, and the detector were not easy to measure with great accuracy. To alleviate this
problem, we used the PENELOPE Monte Carlo code to simulate the projection of a lead edge onto
the detector, using a cone beam and a monoenergetic beam.

For the Monte Carlo simulation, we simulated an x-ray system with the source 66 cm above the
center of a 5 cm x 5 cm detector. The x-ray source was defined to produce a cone beam with angular
span of 8 degrees, which was able to deliver primary x rays to every point on the detector. The lead
edge was constructed to be 0.060 inches (0.1524 cm) thick and 2 inches by 2 inches in length and width,
which is identical to the physical lead edge we have in our lab. The attenuating material simulated
was a 10 cm by 10 cm Lucite block, with a thickness of 4.68 cm, which is also identical to a physical
block of Lucite in our lab. The Lucite was placed 1 cm above the detector plane, and the lead edge
was placed 6 cm above the detector, on the source side. The lead edge was aligned so that it was at
the center of the cone beam, parallel to the anode-cathode axis. It was later noticed that the cone
beam led to artifacts at the edges of the detector, so a larger cone beam was used, and a collimator
was inserted into the simulation at 7 cm above the detector. The collimator was chosen to be lead with
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Figure 1: Comparison of PENELOPE and our tomosynthesis projection simulation with physical effects
included. Top row: PENELOPE Monte Carlo simulation, bottom row: our tomosynthesis simulation.
Left column is the primary-only image, right column is the scatter-only image. The magnitudes do not
match because the Monte Carlo simulation is presented in energy, while the simulation is presented in
number of photons.

0.2 cm thickness, with a window 5 cm x 5 cm in size.
We were able to match the tomosynthesis simulation (for zero degrees) to this Monte Carlo projec-

tion. In particular, the edge has very similar shape characteristics between the two simulations (see
Figs. 1 and 2). Since PENELOPE has been validated multiple times by other groups, we accept this
match as a good indicator that our simulation is performing adequately.

2.2 To develop a theoretical framework to determine optimal acquisition condi-
tions

In order to construct a proper test for optimal acquisition parameters, it was necessary to explore
computer breast phantoms that would be able to provide realistic 3D breast structure for clinically
relevant tasks, such as detecting a tumor in a structured background. We will obtain model software
lesions from Luis de Sisternes at IIT [28], and these lesions will be embedded into the breast phantoms
for projection. This portion of the study has not been completed yet.
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Figure 2: Line profiles through y=5, y=10, y=25 of the scatter-only images in Fig. 1. The PENELOPE
Monte Carlo simulation data is on the left, and the tomosynthesis simulation data is on the right.

2.2.1 An anthropomorphic breast phantom

We worked in collaboration with Predrag Bakic and colleagues at the University of Pennsylvania to
develop an anthropomorphic software breast phantom. The software breast phantom was written in a
combination of C and Matlab, and it consisted of region growing from randomly chosen seed points in
a half-ellipsoid shape. This phantom is described in the literature [16–19].

The phantom generally was comprised of compartments that were assigned to be either glandular
or adipose. The connective tissue between these compartments corresponded to Cooper’s ligaments.
The user can specify the total percent glandular tissue desired, as well as the physical dimensions of the
ellipsoid in which the breast is contained. At the center of the breast was a “predominantly glandular”
area, which amounted to a volume shaped like a heart. The user can also control the extent of this
volume in three directions.

In its original formulation (call this “Phantom I”), these compartments were sometimes very spher-
ical, and they all had very prominent edges. The most unrealistic aspect of the phantom was the
“predominantly glandular” area of the breast, which had extremely prominent edges that were readily
apparent in the projection view images.

To correct the problems with prominent edges, a phantom was created to have zero percent glandular
tissue and a very small “predominanty glandular” region. (It was impossible to make this volume non-
existent.) Some of the empty adipose compartments were then filled with filtered noise, and the whole
image was blurred with a Gaussian (to reduce step-like edges) and linearly interpolated so that the
phantom had voxel sizes 100 micron x 100 micron x 100 micron. Call this “Phantom II” to avoid
confusion.

2.2.2 Validation of phantoms

Validation of these phantoms was not a part of the original proposal, but we found that it was necessary
in order to make any claims about the results at the end of the optimization. In order to show that these
phantoms could be used as a surrogate for real breast tissue, we performed spectral analysis on regions
of interest extracted from the projected images (as well as the reconstructed slices). We measured
the quantity β, which is the slope of radially averaged squared modulus of the 2D power spectrum
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Figure 3: A slice from Phantom II (top) and a parallel beam projection (bottom). Phantom II is
an improved anthropomorphic software breast phantom, with two glandular tissue types and 0.5-mm
Cooper’s ligaments.
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for each ROI. From the literature, β has been shown to be about 3 for mammography and clinical
breast tomosynthesis images. We found β for the phantom images to be comparable. The methods
and results for these experiments were presented at IWDM 2010 and AAPM 2010. The proceedings
paper and supplemental abstract for both, respectively, can be found as appendices to the Annual
Grant Update from 2010 [27]. Although this is necessary for showing that the phantoms are realistic,
it is not sufficient, since many things in nature exhibit power spectral slopes of approximately 3. We
plan to perform a study showing that the number of false positives obtained in a clinically relevant
task is similar between phantom images and clinical images.

One caveat of the studies we performed was that Phantom I could only be made with a voxel size
of (500 microns)3 (within reasonable calculation time and memory). We discovered that projecting a
500-micron phantom onto a 100-micron detector led to artifacts in the periodograms (see Fig. 4), so we
were restricted to projecting the 500-micron phantoms onto 500-micron detectors. In order to extract
ROIs with enough pixels for spectral analysis, we sampled regions that were much larger (3.2 cm x 3.2
cm) than the regions sampled in the clinical cases we were comparing (1 cm x 1 cm). When the clinical
cases were sampled with a 3.2 cm ROI, we noticed that our data looked very similar to the phantom
data, which led us to believe that the differences were a result of the ROI size choice.

We compared a few different methods for testing the effect of ROI size on calculation of β. These
methods and results were presented at the SPIE Medical Imaging meeting in 2011, and the accompa-
nying proceedings paper can be found as Appendix B. We concluded that β is not affected by ROI
size if the ROI is greater than 2.5 cm x 2.5 cm. We hypothesize that the case may be that there are
structures in the breast that can be entirely captured in ROIs that are big enough. If the ROI is too
small, these structures may be partitioned, thus contributing to the power spectra in unpredictable
ways.

2.3 To test the simulated DBT images on CADe packages

We have begun looking at the radial gradient index for the simulated phantom images, which is de-
scribed in the Annual Grant Update from 2010 [27]. We have not performed the optimization study,
but we have discussed methods for moving forward, including strategies for generating phantoms in
parallel on our new Cray supercomputer, embedding lesions into the phantoms, and evaluating results
from the CADe scheme.

3 Key research accomplishments

2009

• Developed framework for tomosynthesis computer simulation

• Showed PENELOPE Monte Carlo package is able to reproduce scatter data produced using
Geant4 from the Sechopoulos group.

• Developed methods for implementing scatter in the computer model

• Showed the relationship between detectability and both number of projection views and angular
range for Poisson noise only.

• Showed that variable exposure, without detector physics other than Poisson noise, causes lower
detectability of microcalcifications in the reconstructed image with larger number of projection
views.
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Figure 4: Projection of 200-micron voxel 10-percent-density phantom onto detectors of different pixel
sizes. From top to bottom, 200-micron, 100-micron, 67-micron, 50-micron, and 40-micron. ROI size
was selected so that detector area was constant, 1.28 cm x 1.28 cm. This corresponded to the following
ROI sizes: 64, 128, 191, 256, 320, respectively. Left to right: image of projected ROI, periodogram,
and power spectrum.
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Figure 5: Comparison of clinical and phantom data using different ROI sizes. Top: β values for
projection view and reconstructed slices for 100-micron ROIs from ten clinical cases; middle: β values
for 320-micron ROIs from ten phantoms; bottom: β values for 320-micron ROIs from ten clinical cases
(same cases as above). In each set of data, the red line corresponds to average β measured across
projection view images, and the blue line corresponds to average β measured across reconstructed
slices. Reconstruction was done with 8-iteration MLEM.
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2010

• Improved framework for tomosynthesis computer simulation by implementing the concept of a
“master layer”, which decreases the amount of time for projection by a factor of the number of
layers in the detector (on the order of 100-200).

• Calculated point response functions for oblique angles of incidence on a cesium iodide detector.

• Demonstrated that the point response functions generated can be used in place of Monte Carlo
simulation for detector modeling, reducing computation time from 20 hours to about 1 second.

• Measured anatomic noise for anthropomorphic breast phantoms we plan to use in our optimization
study. Showed that this anatomic noise is comparable to that in clinical tomosynthesis breast
images.

2011

• Demonstrated spectral agreement in reconstructed slices between our phantom (Phantom I) and
clinical tomosynthesis data.

• Demonstrated that ROI size used to evaluate breast tissue structure affects spectral analysis for
small enough ROI sizes.

• Improved an anthropomorphic software breast phantom to look more realistic.

• Partially validated our simulation code by comparing results for a single situation with data from
Monte Carlo simulations.

4 Reportable outcomes

4.1 Abstracts

• BA Lau, IS Reiser, RM Nishikawa, “The effect of variable exposure on microcalcification de-
tectability in tomosynthesis.” Medical Physics 35:6 p2978, June 2008.

• IS Reiser, RM Nishikawa, BA Lau, “Effect of non-isotropic detector blur on microcalcification
detectability in tomosynthesis.” Proceedings of SPIE 7258: 72585Z, Feb 2009.

• BA Lau, PR Bakic, I Reiser, A-K Carton, ADA Maidment, RM Nishikawa, “An Anthropomorphic
Software Breast Phantom for Tomosynthesis Simulation: Power Spectrum Analysis of Phantom
Reconstructions.” Medical Physics, June 2010.

4.2 Presentations

• BA Lau, IS Reiser, RM Nishikawa, “Microcalcification detectability in tomosynthesis.” 2008
NIBIB Training Grantee Meeting in Silver Spring, MD.

• BA Lau, IS Reiser, RM Nishikawa, “The effect of variable exposure on microcalcification de-
tectability in tomosynthesis.” 2008 AAPM Annual Meeting in Houston, TX.

• IS Reiser, RM Nishikawa, BA Lau, “Effect of non-isotropic detector blur on microcalcification
detectability in tomosynthesis.” 2009 SPIE Medical Imaging Meeting in Orlando, FL.
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• PR Bakic, BA Lau, A-K Carton, I Reiser, ADA Maidment, RM Nishikawa, “An Anthropomorphic
Software Breast Phantom for Tomosynthesis Simulation: Power Spectrum Analysis of Phantom
Projections.” International Workshop on Digital Mammography in Girona, Spain. June 17, 2010.

• BA Lau, PR Bakic, I Reiser, A-K Carton, ADA Maidment, RM Nishikawa, “An Anthropomorphic
Software Breast Phantom for Tomosynthesis Simulation: Power Spectrum Analysis of Phantom
Reconstructions.” AAPM Annual Meeting in Philadelphia, PA. July 22, 2010.

• B. A. Lau, I. Reiser, R. Nishikawa, “Issues in characterizing anatomic structure in digital breast
tomosynthesis,” presented at SPIE Medical Imaging, Orlando, FL, February 12-17, 2011.

4.3 Proceedings papers

• PR Bakic, BA Lau, A-K Carton, I Reiser, ADA Maidment, RM Nishikawa, “An Anthropomorphic
Software Breast Phantom for Tomosynthesis Simulation: Power Spectrum Analysis of Phantom
Projections.” Lecture Notes in Computer Science 6316, 452-458 (2010).

• BA Lau, I Reiser and RM Nishikawa, “Issues in characterizing anatomic structure in digital
breast tomosynthesis”, Proc. SPIE 7961, 796113 (2011).

5 Conclusions

From these experiments, we have explored some of the parameters that will be essential for optimizing
digital breast tomosynthesis. The computer simulation and the methodology we have developed may
be used for other imaging modalities that use projection x rays as the fundamental source of contrast.
In addition to the experiments proposed, we have performed extensive research on anthropomorphic
software breast phantoms, and we have produced a phantom that appears realistic in projection view
images. We have also investigated methods for validation of these phantoms — namely, calculation of
β, a description of the amount and type of anatomic noise — that have only recently been studied by
other groups. It is our hope that future generations of researchers will follow suit in evaluating the
materials they use before planning elaborate studies, only to find that the premise was unrealistic at
the start.
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A Simulation code flowchart

See the following two pages for a schematic of the simulation code.
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Issues in characterizing anatomic structure in digital
breast tomosynthesis

Beverly A. Lau, Ingrid Reiser, Robert M. Nishikawa
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ABSTRACT

Normal mammographic backgrounds have power spectra that can be described using a power law
P (f) = c/fβ , where β ranges from 1.5 to 4.5. Anatomic noise can be the dominant noise source
in a radiograph. Many researchers are characterizing anatomic noise by β, which can be measured
from an image. We investigated the effect of sampling distance, offset, and region of interest (ROI)
size on β. We calculated β for tomosynthesis projection view and reconstructed images, and we
found that ROI size affects the value of β. We evaluated four different square ROI sizes (1.28, 2.56,
3.2, and 5.12 cm), and we found that the larger ROI sizes yielded larger β values in the projection
images.

The β values change rapidly across a single projection view; however, despite the variation
across the breast, different sampling schemes (which include a variety of sampling distances and
offsets) produced average β values with less than 5% variation. The particular location and number
of samples used to calculate β does not matter as long as the whole image is covered, but the size
of the ROI must be chosen carefully.

Keywords: Tomosynthesis, anatomic noise, power spectrum, beta, power-law

1. INTRODUCTION

Normal mammographic background ROIs have periodograms that can be described using a power
law P (f) = c/fβ , where β ranges from 1.5 to 4.5. Anatomic noise can be the dominant noise source
in a radiograph. Many researchers are characterizing anatomical noise by β, which can be measured
from an image. Although β is being measured by many groups, a standardized way of estimating
it does not exist. ROI sizes used in the literature range from 1.28 × 1.28 cm2 to 7.2 × 7.2 cm2.1–5

Some methods allow the ROIs to overlap without restriction, while other methods use only ROIs
that do not overlap at all. The frequency range over which β is calculated also varies across different
studies, but it will not be addressed in this study. We will also avoid issues regarding the effects of
pixel pitch.

In this study, we looked at the effect of different ROI sizes, sampling distance, and sampling
offset on the average β value. We calculated β for tomosynthesis projection view and reconstructed
images, and we calculated the average β across the whole image for different combinations of
sampling distance and offset. Since there may be issues with averaging β across the whole image,
we also investigated the effect of ROI size for individual ROIs.

Further author information:
Beverly A. Lau: E-mail: beverly@uchicago.edu, Telephone: 1 773 834 5106



(a) (b)
Figure 1. Sampling strategies to compare the effect of ROI size on beta estimation. (a) Concentric ROIs of
different sizes. (b) Four ROIs of side length l/2 contained in large ROI with side length l.

2. MATERIALS AND METHODS

We used clinical tomosynthesis projection images acquired with geometry described by Wu et al.6

Reconstruction was done using 8-iteration MLEM. The pectoralis muscle was manually segmented
and the breast was eroded using a structuring element of radius 4.8 mm. This was performed in
each projection view image and in each reconstructed slice to obtain images containing regions that
were uniformly thick across the breast. In some cases, visual inspection led to additional iterations
of erosion in order to fully remove the non-uniformly thick regions. In the reconstructed slices, a
region extending from the edges of the image in the tube direction was removed by the following
amount:

ap = 10(s+ 20)tan(25◦), (1)

where s is the slice number and the artifact area is reported in number of 100-micron pixels. The
distance between the detector and the bottom of the breast was 2 cm.

Using methods from Burgess,3 β was calculated for each region of interest (ROI) that was
contained in the projected breast area, with no restriction on the amount of overlap. The image
containing these β values across the whole breast shall be called the “beta map.” Regions of interest
were extracted from both projection view and reconstructed slice images. These square ROIs were
selected in a variety of sizes (1.28, 2.56, and 3.20 cm, with a pixel pitch of 100µm) to measure
the difference in average β across the breast due to ROI size selection. The mean was subtracted
from each ROI and a radial Hanning window was applied to reduce spectral leakage. The modulus-
squared 2D FFT was taken to yield the periodogram for each ROI. The approximated 1D power
spectrum was generated through the radial average of the periodogram, and β was calculated as
the slope of the 1D power spectrum between 0.15 and 0.7 cycles/mm, plotted on a log-log plot.
The frequency range over which β is calculated was determined empirically in studies by Engstrom
et al .5

This “beta map” was sub-sampled to simulate selection of ROIs with a variety of sampling
distances. The sampling distances investigated included 0.01, 0.10, 0.20, 0.32, 0.45, 0.64, 1.28,
and 1.60 cm, and the resulting beta maps were compared using average β value for the central
(zero-degree) projection view image. This sub-sampling was also done with 0.05, 0.1, and 0.15 cm
sampling offset to investigate the effect of sampling at a different starting places in the breast. For
comparison of different sampling distance and offset methods, we averaged the power law exponent,
β, across the entire zero-degree projection view image.

In addition to global averaging methods, we also investigated the comparison of β for individual
ROIs. To accomplish this, we looked at two different methods: 1) comparing β for concentric ROIs



Figure 2. Beta as a function of sampling distance plotted for eight cases, showing that β is independent of
sampling distance.

with a common center and which only differ in size and 2) comparing β for one large ROI with the
average β for the four smaller ROIs obtained by splitting the large ROI into four quadrants (see
Fig. 1). For the former method, we compared three different square ROI sizes: 1.28, 2.56, and 3.20
cm. For the latter method, we used large ROI sizes of 2.56 and 5.12 cm, which were split into four
smaller ROIs measuring 1.28 cm and 2.56 cm, respectively.

We obtained 73 digital breast tomosynthesis cases from Massachusetts General Hospital. These
images were the contralateral lesion-free breast images from women who were called back for diag-
nostic testing. Nine images were excluded because they included such objects as implants, cysts, or
benign microcalcifications. This left a total of 64 cases for analysis. The images were acquired on
a GE prototype system, which uses a 50-degree angular span (with center of rotation 15 cm above
the breast) and 11 projection view images.

3. RESULTS

In the zero-degree projection view images of the beta maps, we compared average β values for
different sampling distances and for different sampling offset amounts. We found that β varies
less than 5% using different sampling strategies, so we conclude that β is independent of sampling
distance and sampling offset (see Figs. 2 and 3). If the sampling distance is greater than half the
size of the ROI, fewer ROIs may be extracted and the statistical uncertainty in the values increases.
For this reason, we recommend sampling with at least 50% overlap.

We compared β for individual ROIs using two methods. First, we investigated three sizes of
concentric ROIs (1.28, 2.56, and 3.20 cm) selected from 100 locations in the zero-degree projection
view image such that each ROI completely overlapped the breast area (see Fig. 1a). The selection



Figure 3. Beta as a function of sampling distance, plotted for three sampling offset values for five cases,
showing that β is independent of sampling offset. From thin to thick equals increasing sampling offset (0.05,
0.1, 0.15 cm).

Table 1. Difference in β measured from concentric ROIs selected from 100 seed points in 64 cases. The
same 100 seed points were chosen for all three pairs of ROI sizes. Note that correlation between seed points
was not taken into account.

[ROI size]1 [ROI size]2 < β1 − β2 > p-value 95% CI

1.28 cm 2.56 cm -0.141 < 2.2 × 10−16 (-0.147, -0.135)
1.28 cm 3.20 cm -0.134 < 2.2 × 10−16 (-0.140, -0.128)
2.56 cm 3.20 cm 0.007 8.3 × 10−5 (0.0035, 0.0105)

* The critical p-value, taking into account the Bonferroni correction for multiple testing, was 0.0056.
** Zero degree projection view only.

method was repeated for the center reconstructed slices. We observed that the difference in β
between any pair of sizes was statistically significant; however, the average difference in β between
the two larger ROI sizes was small (0.007) compared to the other two differences (-0.141 and -0.134)
(see Table 1 and Fig. 4).

We compared < β > measured from four ROIs of side length l/2 to β measured from a large ROI
of side length l, with the four smaller ROIs completely embedded in the larger ROI (see Fig. 1b).
For 100 ROIs from the zero-degree projection view image extracted from 64 cases, we found that the
average difference in β for 1.28 cm and 2.56 cm ROIs was -0.120 in the projection view images (see
Table 2). For the 2.56 cm and 5.12 cm ROIs, the average difference was -0.0285 in the projection
view images. It is important to note that, although these differences were statistically significant
using a two-tailed paired Student’s t-test, the average differences we found for the larger ROIs (2.56
cm and 5.12 cm) were very small compared with the differences we observed for the smaller ROIs
(1.28 cm and 2.56 cm). The same trend was observed in the reconstructed slices (see Table 2).

In order to standardize the results presented, all paired Student’s t-tests include difference
calculations that are made with β from the larger ROI size being subtracted from β from the
smaller ROI size. Thus, a negative mean difference indicates that the larger ROI has a larger β
value than the smaller ROI does. Correlation between seed points was not taken into account in



Figure 4. Beta values for concentric ROIs in the zero-degree projection view for a single case. Three sizes
are compared: 1.28 cm, 2.56 cm, and 3.20 cm.



Table 2. Difference in β averaged over four ROIs compared to β for the large ROI, for 100 locations in 64
cases. The same 100 locations were used for both pairs of ROI sizes.

[ROI size]1 [ROI size]2 < β1 − β2 > p-value 95% CI

Projection
1.28 cm 2.56 cm -0.120 < 2.2 × 10−16 (-0.124,-0.117)
2.56 cm 5.12 cm -0.0285 < 2.2 × 10−16 (-0.0306,-0.0264)

Reconstruction
1.28 cm 2.56 cm -0.160 < 2.2 × 10−16 (-0.164,-0.156)
2.56 cm 5.12 cm -0.0641 < 2.2 × 10−16 (-0.0668,-0.0614)

* The critical p-value, taking into account the Bonferroni correction for multiple testing, was 0.0125.
** Zero degree projection view or center reconstructed slice only.

the statistical analysis.

4. DISCUSSION

Beta is now commonly used to characterize anatomical structure noise. Published results show
that beta is reduced in the reconstructed slices as compared to the projection view images,5 and
a decrease in β corresponds to an increase in detectability of masses.2 We have found that the
method used to measure β (namely, choice of ROI size) needs to be done carefully so as not to bias
the results.

In this study, we found that large ROIs (2.56, 3.20, and 5.12 cm) had larger β values than the
smallest ROIs (1.28 cm), and that change in β values is negligible once the regions of interest reach
a certain minimum size. We believe that the reason for this finding is related to structures in the
breast being on the order of 1–2 mm in size, like Cooper’s ligaments. Thus, ROI size must be chosen
to match the imaging task, otherwise detectability will not be estimated accurately. Research on
this topic is ongoing.

Beta seems to be independent of sampling distance and offset; however, in order to get an
accurate estimate of β, it is important to sample ROIs from the entire breast.

We did not take into account correlation between ROIs in our statistical analysis. This may
affect the p-values we find when such correlation is taken into consideration.

5. CONCLUSION

We have shown that the particular location and number of samples used to calculate β does not
matter as long as the whole image is spanned. We also show that ROI size affects the estimation
of β for ROIs that are between 1 cm and 2 cm in size. Large ROIs seem to yield consistent β
values. Because of this, ROI size must be chosen carefully according to the imaging task. For
microcalcifcation detection, small ROIs should be used to calculate β, and for mass detection, large
ROIs should be used.



Projection view Reconstructed slice

Figure 5. Beta values for ROIs and the average of their constituent quarter partitions for a single case.
Data is shown for both zero-degree projection view and center reconstructed slice for a single case, with
100 ROIs per image. Top row shows data from 2.56 and 1.28 cm ROIs, and second row shows data from
2.56 and 5.12 cm ROIs.
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